Application of learning to rank to protein remote homology detection
نویسندگان
چکیده
MOTIVATION Protein remote homology detection is one of the fundamental problems in computational biology, aiming to find protein sequences in a database of known structures that are evolutionarily related to a given query protein. Some computational methods treat this problem as a ranking problem and achieve the state-of-the-art performance, such as PSI-BLAST, HHblits and ProtEmbed. This raises the possibility to combine these methods to improve the predictive performance. In this regard, we are to propose a new computational method called ProtDec-LTR for protein remote homology detection, which is able to combine various ranking methods in a supervised manner via using the Learning to Rank (LTR) algorithm derived from natural language processing. RESULTS Experimental results on a widely used benchmark dataset showed that ProtDec-LTR can achieve an ROC1 score of 0.8442 and an ROC50 score of 0.9023 outperforming all the individual predictors and some state-of-the-art methods. These results indicate that it is correct to treat protein remote homology detection as a ranking problem, and predictive performance improvement can be achieved by combining different ranking approaches in a supervised manner via using LTR. AVAILABILITY AND IMPLEMENTATION For users' convenience, the software tools of three basic ranking predictors and Learning to Rank algorithm were provided at http://bioinformatics.hitsz.edu.cn/ProtDec-LTR/home/ CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
dRHP-PseRA: detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation
Protein remote homology detection is an important task in computational proteomics. Some computational methods have been proposed, which detect remote homology proteins based on different features and algorithms. As noted in previous studies, their predictive results are complementary to each other. Therefore, it is intriguing to explore whether these methods can be combined into one package so...
متن کاملProfile-based direct kernels for remote homology detection and fold recognition
MOTIVATION Protein remote homology detection is a central problem in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for remote homology detection. The performance of these methods depends on how the protein sequences are modeled and on the method used to compute the kernel function between them. RESULTS We...
متن کاملProtein remote homology detection based on auto-cross covariance transformation
Protein remote homology detection is a critical step toward annotating its structure and function. Supervised learning algorithms such as support vector machine are currently the most accurate methods. The position-specific score matrices (PSSMs) contain wealthy information about the evolutionary relationship of proteins. However, the PSSMs often have different lengths, which are difficult to b...
متن کاملAnalyzing new features of infected web content in detection of malicious web pages
Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...
متن کاملApplication of latent semantic analysis to protein remote homology detection
MOTIVATION Remote homology detection between protein sequences is a central problem in computational biology. The discriminative method such as the support vector machine (SVM) is one of the most effective methods. Many of the SVM-based methods focus on finding useful representations of protein sequence, using either explicit feature vector representations or kernel functions. Such representati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 31 21 شماره
صفحات -
تاریخ انتشار 2015